منابع مشابه
Unsupervised Patch-Based Image Regularization and Representation
A novel adaptive and patch-based approach is proposed for image regularization and representation. The method is unsupervised and based on a pointwise selection of small image patches of fixed size in the variable neighborhood of each pixel. The main idea is to associate with each pixel the weighted sum of data points within an adaptive neighborhood and to use image patches to take into account...
متن کاملUnsupervised Dictionary Learning for Large-Scale Natural Image Classi cation
Recent work in machine learning has been proven successful on object recognition task. For instance, best digit-classi cation accuracy on MNIST dataset rivals that of human-beings (Cire3an et al., 2012); (Coates et al., 2011) has achieved state-of-art performance on both CIFAR and NORB benchmarks; breakthrough on scalable visual recognition has been made by (Krizhevsky et al., 2012) via e cient...
متن کاملUnsupervised Learning of Compositional Sparse Code for Natural Image Representation
This article proposes an unsupervised method for learning compositional sparse code for representing natural images. Our method is built upon the original sparse coding framework where there is a dictionary of basis functions often in the form of localized, elongated and oriented wavelets, so that each image can be represented by a linear combination of a small number of basis functions automat...
متن کاملUnsupervised learning of natural languages.
We address the problem, fundamental to linguistics, bioinformatics, and certain other disciplines, of using corpora of raw symbolic sequential data to infer underlying rules that govern their production. Given a corpus of strings (such as text, transcribed speech, chromosome or protein sequence data, sheet music, etc.), our unsupervised algorithm recursively distills from it hierarchically stru...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Visual Media
سال: 2019
ISSN: 2096-0433,2096-0662
DOI: 10.1007/s41095-019-0147-y